

A Multimodal Analysis of Influencer Content on Twitter

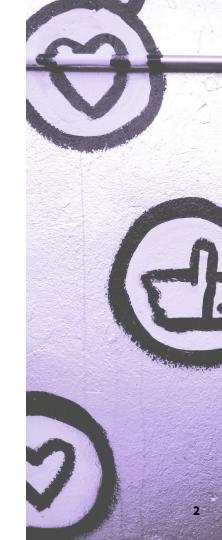
Danae Sánchez Villegas¹, Catalina Goanta², Nikolaos Aletras¹

1: Computer Science Department, University of Sheffield, UK

2: Utrecht University

Social Media Influencers

Social media influencers are content creators who have established credibility in a specific domain (e.g., fitness, technology), are followed by a large number of accounts and can impact the buying decisions of their followers.



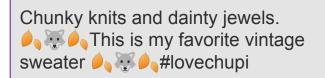
Influencer Marketing

- Influencer marketing is more effective than traditional paid advertising.
- Online creators can help brands reach new, engaged audiences through endorsements and product placements, leveraging the trust these influencers have built with their followers.

Influencer Marketing

Influencer marketing is dominated by native advertising

 there is no obvious distinction between commercial and non-commercial content



Detecting commercial content

Automatically identifying commercial content by influencers is important

- Transparency: it helps ensure transparency in advertising and marketing.
- Consumer Protection: it protects consumers from deceptive advertising.
- Regulatory Compliance: some countries have laws and regulations governing advertising and disclosure requirements for influencers and brands.
- Analysis of commercial language characteristics on a large scale.

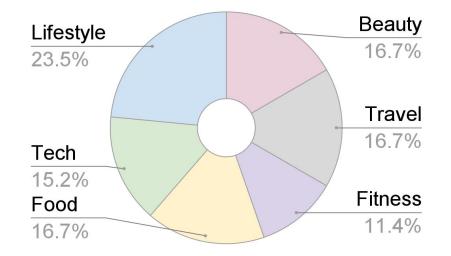
Detecting commercial content

Automatic detection of influencers commercial content is difficult.

- Disclosure guidelines (including keywords such as #ad, #sponsored) are not always followed
- Brand cues may appear in different modalities such as text and images

A large publicly available dataset of 14, 384 text-image pairs and 1, 614 text-only influencer tweets written in English.

- 132 Influencer Accounts
- 6 domains
- Jan 2015- Aug 2021



Tweets are mapped into commercial and non-commercial categories

- Keyword-based Weak Labeling (train & dev sets)
- Human Data Annotation (test sets)

Keyword-based Weak Labeling

Extend the keyword lists (verified by members of a national consumer authority)

- Disclosure terms: #ad, #sponsored
- Terms relevant to different business models:
 - Gifting: #gift
 - Endorsements: #ambassador
 - Affiliate marketing: #aff
- All of the keywords used for data labeling are removed for the experiments

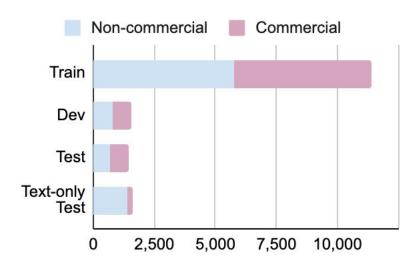
Human Data Annotation (test sets)

- Four annotators with a substantial legal background and knowledge of advertising regulation
- The inter-annotator agreement between two annotations across all tweets is 0.78 Cohen's-Kappa – substantial agreement — and 0.73 Krippendorff's alpha.

Data Splits

Account-level splits

Split	Total			
Train	11,377 (79.1%)			
Dev	1,572 (10.9%)			
Test	1,435 (10%)			
Text-only Test	1,614			
All	15,998			



Dataset	Publicly Available	Posts w/o brand mentions	Human Annotation	Keyword Matching	No. of Commercial Keywords	Platform	Modality	Time Range	Domains
Han et al. (2021)	X	×	×	×	0	Twitter	Text	not specified	fashion
Zarei et al. (2020)	×	1	×	1	7	Instagram	Text	Jul 2019 - Aug 2019	not specified
Yang et al. (2019)	X	×	×	✓	3	Instagram	Text & Image	not specified	not specified
Kim et al. (2021b)	1	1	×	1	3	Instagram	Text & Image	not specified	not specified
Kim et al. (2020)	1	×	×	✓	1	Instagram	Text & Image	Oct 2018 - Jan 2019	beauty, family, food, fashion, pet, fitness, interior, travel,
MICD (Ours)	1	1	1	✓	26	Twitter	Text & Image	Jan 2015 - Aug 2021	beauty, travel, food fitness, technology, lifestyle

Comparison of existing datasets for influencer content analysis

Influencer Content Classification Models

Prompting

- Flan-T5 (zero-shot, few-shot)
- GPT-3 (zero-shot, few-shot)

Text-only

- BiLSTM-Att
- BERT
- BERTweet

Image-only

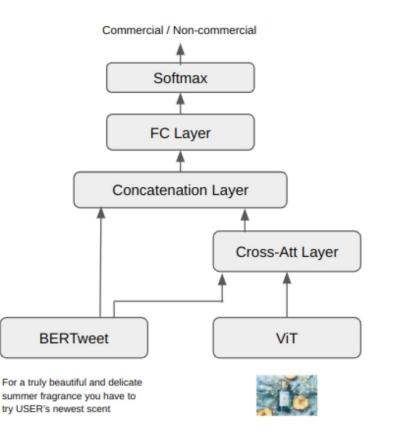
- ResNet
- ViT

Text & Image

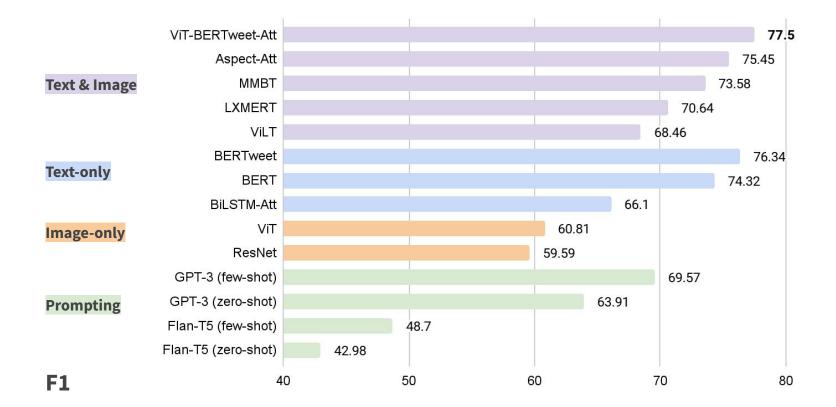
- ViLT
- LXMERT
- MMBT
- Aspect-Att
- ViT-BERTeet-Att (Ours)

ViT-BERTweet-Att

Combine unimodal pretrained representations via cross-attention fusion strategy so that text features can guide the model to pay attention to the relevant image regions.



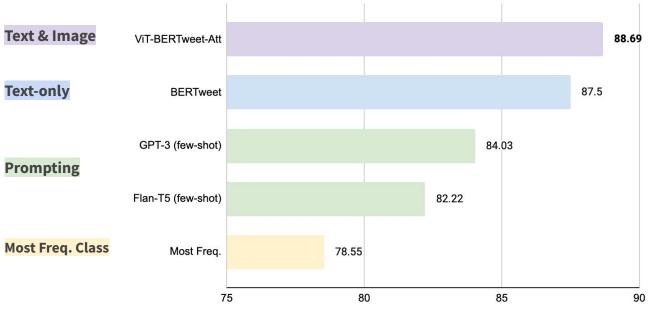
Identifying Commercial Influencer Content



15

Identifying Commercial Influencer Content

Text-only Test Set



Analysis

• Multimodal modeling captures context beyond keyword-matching.

Just seen that Pepsi ad...awkward.

ViT-BERTweet-Att: NC

• Multimodal modeling aids in the discovery of undisclosed commercial posts

chunky knits and dainty jewels. This is my favorite vintage sweater

#lovechupi

Actual: C BERTweet: NC ViT-BERTweet-Att: C

Analysis

Challenging cases for text and multimodal models:

- Posts that describe their "personal" experiences, particularly while traveling
- Posts include "natural photos" rather than product promotions

Cherry tree hill is hands down the best view in #Barbados. #VisitBarbados Actual: C BERTweet: NC

ViT-BERTweet-Att: NC

Summary

- Introduced a novel dataset of multimodal influencer content consisting of tweets labeled as commercial or non-commercial.
- First dataset to include high quality annotated posts by experts in advertising regulation.
- Experiments including vision, language and multimodal approaches for identifying commercial content
- Multimodal modeling is useful for identifying commercial posts
 - Reducing the amount of false positives
 - Capturing relevant context that aids in the discovery of undisclosed commercial posts.
- Dataset: <u>https://github.com/danaesavi/micd-influencer-content-twitter</u>

DSV and NA are supported by the Leverhulme Trust under Grant Number: RPG#2020#148. NA is also supported by ESRC (ES/T012714/1). DSV is also supported by the Centre for Doctoral Training in Speech and Language Technologies (SLT) and their Applications funded by the UK Research and Innovation grant EP/S023062/1. CG is supported by the ERC Starting Grant research project HUMANads (ERC-2021-StG No 101041824) and the Spinoza grant of the Dutch Research Council (NWO), awarded in 2021 to José van Dijck, Professor of Media and Digital Society at Utrecht University.

THANKS

